翻訳と辞書
Words near each other
・ Electropoise
・ Electronic system-level design and verification
・ Electronic Systems
・ Electronic Systems Center
・ Electronic tagging
・ Electronic tanpura
・ Electronic tattoo
・ Electronic Tax Administration Advisory Committee
・ Electronic tax filing
・ Electronic Temperature Instruments
・ Electronic test equipment
・ Electronic Text Corpus of Sumerian Literature
・ Electronic Theatre Controls
・ Electronic throttle control
・ Electronic ticket
Electronic toll collection
・ Electronic Toll Collection (Taiwan)
・ Electronic tongue
・ Electronic trading
・ Electronic trading platform
・ Electronic Transaction Aggregation & Analysis Layer
・ Electronic Travel Authorization
・ Electronic trial master file
・ Electronic tuner
・ Electronic Video Recording
・ Electronic viewfinder
・ Electronic visit verification
・ Electronic visual display
・ Electronic Visualization Laboratory
・ Electronic voice alert


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Electronic toll collection : ウィキペディア英語版
Electronic toll collection

Electronic toll collection (ETC) aims to eliminate the delay on toll roads by collecting tolls electronically. ETC determines whether the cars passing are enrolled in the program, alerts enforcers for those that are not, and electronically debits the accounts of registered car owners without requiring them to stop.
In 1959, Nobel Economics Prize winner William Vickrey was the first to propose a system of electronic tolling for the Washington Metropolitan Area. He proposed that each car would be equipped with a transponder. “The transponder’s personalised signal would be picked up when the car passed through an intersection, and then relayed to a central computer which would calculate the charge
according to the intersection and the time of day and add it to the car’s bill” Electronic toll collection has facilitated the concession to the private sector of the construction and operation of urban freeways, as well as made feasible the improvement and the practical implementation of road congestion pricing schemes in a limited number of urban areas to restrict auto travel in the most congested areas.
In the 1960s and 1970s, free flow tolling was tested with fixed transponders at the undersides of the vehicles and readers, which were located under the surface of the highway.
Norway has been the world's pioneer in the widespread implementation of this technology. ETC was first introduced in Bergen, in 1986, operating together with traditional tollbooths. In 1991, Trondheim introduced the world's first use of completely unaided full-speed electronic tolling. Norway now has 25 toll roads operating with electronic fee collection (EFC), as the Norwegian technology is called (see AutoPASS). In 1995, Portugal became the first country to apply a single, universal system to all tolls in the country, the Via Verde, which can also be used in parking lots and gas stations. The United States is another country with widespread use of ETC in several states, though many U.S. toll roads maintain the option of manual collection.
Cashless tolling is when cash tolls are not collected on the roadway. Electronic toll collection becomes the primary option for payment, with payment by mail as a secondary option.〔Copeland, Larry, (Toll roads take cashless route ), USA Today, 7/28/2008.〕 Open road tolling (ORT) is a type of electronic toll collection without the use of toll booths. The major advantage to ORT is that users are able to drive through the toll plaza at highway speeds without having to slow down to pay the toll.
==Overview==

In some urban settings, automated gates are in use in electronic-toll lanes, with 5 mph (8 km/h) legal limits on speed (and 2 to 3 times that as practical limits even with practice and extreme concentration); in other settings, 20 mph (35 km/h) legal limits are not uncommon. However, in other areas such as the Garden State Parkway in New Jersey, and at various locations in California, Florida, Pennsylvania, Delaware, and Texas, cars can travel through electronic lanes at full speed. Illinois' Open Road Tolling program features 274 contiguous miles of barrier-free roadways, where I-PASS or E-ZPass users continue to travel at highway speeds through toll plazas, while cash payers pull off the main roadway to pay at tollbooths. Currently over 80% of Illinois' 1.4 million daily drivers use an I-PASS.
Enforcement is accomplished by a combination of a camera which takes a picture of the car and a radio frequency keyed computer which searches for a drivers window/bumper mounted transponder to verify and collect payment. The system sends a notice and fine to cars that pass through without having an active account or paying a toll.
Factors hindering full-speed electronic collection include significant non-participation, entailing lines in manual lanes and disorderly traffic patterns as the electronic- and manual- collection cars "sort themselves out" into their respective lanes; problems with pursuing toll evaders; need, in at least some current (barrier) systems, to confine vehicles in lanes, while interacting with the collection devices, and the dangers of high-speed collisions with the confinement structures; vehicle hazards to toll employees present in some electronic-collection areas; the fact that in some areas at some times, long lines form even to pass through the electronic-collection lanes; and costs and other issues raised when retrofitting existing toll collection facilities. Unionized toll collectors can also be problematic.〔
Even if line lengths are the same in electronic lanes as in manual ones, electronic tolls save registered cars time: eliminating the stop at a window or toll machine, between successive cars passing the collection machine, means a fixed-length stretch of their journey past it is traveled at a higher average speed, and in a lower time. This is at least a psychological improvement, even if the length of the lines in automated lanes is sufficient to make the no-stop-to-pay savings insignificant compared to time still lost due waiting in line to pass the toll gate. Toll plazas are typically wider than the rest of the highway; reducing the need for them makes it possible to fit toll roads into tight corridors.
Despite these limitations, however, it is important to recognize that throughput increases if delay at the toll gate is reduced (''i.e.'', if the tollbooth can serve more vehicles per hour). The greater the throughput of any toll lane, the fewer lanes required, so expensive construction can be deferred. Specifically, the toll-collecting authorities have incentives to resist pressure to limit the fraction of electronic lanes in order to limit the length of manual-lane lines. In the short term, the greater the fraction of automated lanes, the lower the cost of operation (once the capital costs of automating are amortized). In the long term, the greater the relative advantage that registering and turning one's vehicle into an electronic-toll one provides, the faster cars will be converted from manual-toll use to electronic-toll use, and therefore the fewer manual-toll cars will drag down average speed and thus capacity.
In some countries, some toll agencies that use similar technology have set up (or are setting up) reciprocity arrangements, which permit one to drive a vehicle on another operator's tolled road with the tolls incurred charged to the driver's toll-payment account with their home operator. An example is the United States E-ZPass tag, which is accepted on toll roads, bridges and tunnels in fourteen states from Illinois to Maine.
In Australia, there are a number or organisations that provide tags that can be used on toll roads. They include Roads and Maritime Services, Roam and E-Toll. A toll is debited to the customer's account with their tag provider. Some toll road operators – including Sydney's Sydney Harbour Tunnel, Lane Cove Tunnel, and Westlink M7, Melbourne's CityLink and Eastlink, and Brisbane's Gateway Motorway – encourage use of such tags, and apply an additional vehicle matching fee to vehicles without a tag.
A similar device in France, called Liber-T for light vehicles and TIS-PL for HGVs, is accepted on all toll roads in the country.
In Brazil, the (Sem Parar/Via-Fácil ) system allows customers to pass through tolls in more than 1,000 lanes in the states of São Paulo, Paraná, Rio Grande do Sul, Santa Catarina, Bahia and Rio de Janeiro. Sem Parar/Via-Fácil also allows users to enter and exit more than 100 parking lots. There are also other systems, such as (via expressa ), (onda livre ) and (auto expresso ), that are present in the states of Rio de Janeiro, Rio Grande do Sul, Santa Catarina, Parana and Minas Gerais.
In Pakistan, the National Database and Registration Authority is implementing an electronic toll collection system on motorways using RFID.
The European Union has created the EFC-directive,〔
*〕 which attempts to standardize European toll collection systems. Systems deployed after 1 January 2007 must support at least one of the following technologies: satellite positioning, mobile communications using the GSM-GPRS standard or 5.8 GHz microwave technology. All toll roads in Ireland must support the eToll tag standard.
From 2015, the government requires commercial trucks above 3.5 tons on Norwegian roads to have a transponder and a valid road toll subscription.〔(【引用サイトリンク】url=http://www.autopass.no/en/compulsory-tag )〕 Before this regulation, two thirds of foreign trucks failed to pay road tolls.〔(【引用サイトリンク】url=http://www.nrk.no/trondelag/krav-om-bombrikke-pa-tunge-kjoretoy-1.11981092 )

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Electronic toll collection」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.